BBVA: Causality in Retail Banking at BBVA AI Factory
In retail banking, understanding the causal relationships between variables is crucial for making informed decisions that enhance customer experience and optimize financial outcomes. At BBVA AI Factory, causal inference techniques are improving our approach to complex challenges where traditional A/B testing is infeasible or removing bias becomes a hard problem. Also, it has significantly enhanced financial health metrics and risk management processes. By utilizing causal inference, we can find out the true impact of various interventions on customer behavior and financial stability, leading to more accurate risk assessments and tailored financial advice. This approach addresses the limitations of conventional experimental methods, which can be impractical or ethically challenging, by providing robust alternative solutions. This presentation will showcase three detailed case studies and quantifiable outcomes, highlighting the practical benefits and advancements that causality offers in retail banking analytics. We will deepen into how we’ve enhanced our recommendation systems and embedded causal inference in our analytics framework at BBVA AI Factory. Attendees will leave the room with a deep understanding of causal AI applications in the financial sector.
-
Álvaro Ibraín Rodríguez Expert Data Scientist, BBVA AI Factory